
GLOBAL
EDITION

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

GLOBAL
EDITION

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

Java ™
 Softw

are Solutions
Foundations of Program

 D
esign

Lew
is

Loftus
N

IN
T

H

ED
IT

IO
N

G
LO

B
A

L
ED

IT
IO

N

Java™ Software Solutions
Foundations of Program Design
NINTH EDITION

Lewis • Loftus

Lewis_09_1292221720_Final.indd 1 10/10/17 5:19 PM

Digital Resources for Students
Your new textbook provides 12-month access to digital resources that may include
VideoNotes (step-by-step video tutorials on programming concepts), source code, web
chapters, quizzes, and more. Refer to the preface in the textbook for a detailed list of
resources.

Follow the instructions below to register for the Companion Website for John Lewis
and William Loftus’ JavaTM Software Solutions, Ninth Edition, Global Edition.

1. Go to www.pearsonglobaleditions.com/Lewis
2. Select your textbook and click Companion Website.
3. Click Register and follow the on-screen instructions to create a login name

and password.

Use a coin to scratch off the coating and reveal your access code.
Do not use a sharp knife or other sharp object as it may damage the code.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

IMPORTANT
This prepaid subscription does not include access to Pearson MyLab Programming,
which is available at www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable. If the access code has already been revealed, it may no
longer be valid.

For technical support, go to https://support.pearson.com/getsupport

Lewis_09_1292221720_ifc_Final.indd 1 10/10/17 5:25 PM

http://www.pearsonglobaleditions.com/Lewis
http://www.myprogramminglab.com
https://support.pearson.com/getsupport

JOHN LEWIS
Virginia Tech

•
WILLIAM LOFTUS

Accenture

FOUNDATIONS OF PROGRAM DESIGN

Ninth Edition

Global Edition
TM

SOFTWARE SOLUTIONS
java

330 Hudson Street, NY NY 10013

A01_LEWI1724_09_GE_FM.indd 1 09/10/17 4:48 PM

Director, Portfolio Management: Engineering, Computer
Science & Global Editions: Julian Partridge

Specialist, Higher Ed Portfolio Management: Matt Goldstein
Portfolio Management Assistant: Kristy Alaura
Assistant Acquisitions Editor, Global Edition: Aditee

Agarwal
Senior Project Editor, Global Edition: Amrita Naskar
Managing Content Producer: Scott Disanno
Content Producer: Carole Snyder
Web Developer: Steve Wright
Senior Media Editor, Global Edition: Gargi Banerjee
Senior Manufacturing Controller, Global Edition: Jerry

Kataria

Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side

Communications Inc (LSC): Maura Zaldivar-Garcia
Inventory Manager: Ann Lam
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Cover Designer: Lumina Datamatics Ltd.
Cover Photo Credit: fon.tepsoda/Shutterstock
Project Management: Louise C. Capulli, Lakeside Editorial

Services, L.L.C.
Full-Service Project Management: Revathi Viswanathan,

Cenveo® Publisher Services

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the Credits page at
the end of the front matter of this textbook.

Pearson Education Limited
KAO Two
KAO Park
Harlow
Essex CM17 9NA
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The rights of John Lewis and William Loftus to be identified as the authors of this work have been asserted by them in accor-
dance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled JavaTM Software Solutions: Foundations of Program Design,
9th edition, ISBN 9780134462028, by John Lewis and William Loftus, published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6–10 Kirby Street, London EC 1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

ISBN 10: 1-292-22172-0
ISBN 13: 978-1-292-22172-4

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset by Cenveo Publisher Services

Printed and bound by Vivar in Malaysia

A01_LEWI1724_09_GE_FM.indd 2 20/10/17 5:40 PM

http://www.pearsonglobaleditions.com

This book is dedicated to our families.

Sharon, Justin, Kayla, Nathan, and Samantha Lewis

and

Veena, Isaac, and Dévi Loftus

A01_LEWI1724_09_GE_FM.indd 3 27/09/17 5:41 PM

A01_HANL4898_08_SE_FM.indd 2 24/12/14 12:49 PM

This page intentionally left blank

5

Welcome to the Ninth Edition of Java Software Solutions: Foundations of
Program Design. We are pleased that this book has served the needs of so many
students and faculty over the years. This edition has been tailored further to
improve the coverage of topics key to introductory computing.

New to This Edition
The biggest change to this edition of Java Software Solutions is a sweeping over-
haul of the Graphics Track sections of the book to fully embrace the JavaFX API.
Swing is no longer actively supported by Oracle. JavaFX is now the preferred
approach for developing graphics and graphical user interfaces (GUIs) in Java,
and we make use of it throughout this text.

The changes include the following:

■■ Coverage of JavaFX graphical shapes.

■■ Coverage of JavaFX controls, including buttons, text fields, check boxes,
radio buttons, choice boxes, color pickers, date pickers, dialog boxes,
sliders, and spinners.

■■ Use of Java 8 method references and lambda expressions to define event
handlers.

■■ An exploration of the JavaFX class hierarchy.

■■ An explanation of JavaFX properties and property binding.

■■ Revised end-of-chapter exercises and programming projects.

■■ A new appendix (Appendix G) that presents an overview of JavaFX layout
panes.

■■ A new appendix (Appendix H) that introduces the JavaFX Scene Builder
software.

There are two exciting aspects to embracing JavaFX. First, it provides a much
cleaner approach to GUI development than Swing did. Equivalent programs using
JavaFX are shorter and more easily understood.

Second, the JavaFX approach embraces core object-oriented principles bet-
ter than Swing did. For example, all graphic shapes are represented by classes
with fundamental data elements, such as a Circle class with a radius. Early on
(Chapter 3), the shape classes provide a wealth of basic, well-designed classes, just
when students need to understand what classes and objects are all about.

Preface

A01_LEWI1724_09_GE_FM.indd 5 27/09/17 5:41 PM

6 PREFACE

The use of Java 8 method references provides an easy-to-understand approach
to defining event handlers. The use of the (underlying) lambda expressions is also
explored as an alternative approach.

JavaFX layout panes are used and explained as needed in examples, with a full
overview of layout panes provided in a new appendix. We think this works better
than the way we treated Swing layout managers, as a separate topic in a chapter.

All GUI development in the book is done “by hand” in straight Java code,
which is important for beginning students. The JavaFX drag-and-drop Scene
Builder is discussed in a new appendix, but it is not used in the book itself.

In addition to the changes related to JavaFX, we also updated examples and
discussions in various places throughout the book as needed to bring them up-to-
date and improve their pedagogy.

We’re excited about the opportunities this new edition of Java Software
Solutions provides for both students and instructors. As always, questions and
comments are welcome.

Cornerstones of the Text
This text is based on the following basic ideas that we believe make for a sound
introductory text:

■■ True object-orientation. A text that really teaches a solid object-oriented
approach must use what we call object-speak. That is, all processing should
be discussed in object-oriented terms. That does not mean, however, that
the first program a student sees must discuss the writing of multiple classes
and methods. A student should learn to use objects before learning to write
them. This text uses a natural progression that culminates in the ability to
design real object-oriented solutions.

■■ Sound programming practices. Students should not be taught how to
program; they should be taught how to write good software. There’s a
difference. Writing software is not a set of cookbook actions, and a good
program is more than a collection of statements. This text integrates
practices that serve as the foundation of good programming skills. These
practices are used in all examples and are reinforced in the discussions.
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques
throughout the text. The Software Failure vignettes reiterate these lessons
by demonstrating the perils of not following these sound practices.

■■ Examples. Students learn by example. This text is filled with fully imple-
mented examples that demonstrate specific concepts. We have intertwined
small, readily understandable examples with larger, more realistic ones.
There is a balance between graphics and nongraphics programs. The
VideoNotes provide additional examples in a live presentation format.

A01_LEWI1724_09_GE_FM.indd 6 27/09/17 5:41 PM

 PREFACE 7

■■ Graphics and GUIs. Graphics can be a great motivator for students, and
their use can serve as excellent examples of object-orientation. As such, we
use them throughout the text in a well-defined set of sections that we call
the Graphics Track. The book fully embraces the JavaFX API, the preferred
and fully-supported approach to Java graphics and GUIs. Students learn to
build GUIs in the appropriate way by using a natural progression of topics.
The Graphics Track can be avoided entirely for those who do not choose to
use graphics.

Chapter Breakdown
Chapter 1 (Introduction) introduces computer systems in general, including basic
architecture and hardware, networking, programming, and language translation.
Java is introduced in this chapter, and the basics of general program development,
as well as object-oriented programming, are discussed. This chapter contains
broad introductory material that can be covered while students become familiar
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parameters,
and return types. Encapsulation and constructors are covered as well. Some of the
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to
make decisions. Then the if statement and while loop are explored in detail.
Once loops are established, the concept of an iterator is introduced and the
Scanner class is revisited for additional input parsing and the reading of text files.
Finally, the ArrayList class introduced, which provides the option for managing
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java’s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop.
The for-each loop is also used to process iterators and ArrayList objects.

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of
issues related to the design of classes. Techniques for identifying the classes and
objects needed for a problem and the relationships among them are discussed. This

A01_LEWI1724_09_GE_FM.indd 7 27/09/17 5:41 PM

8 PREFACE

chapter also covers static class members, interfaces, and the design of enumerated
type classes. Method design issues and method overloading are also discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array process-
ing. The nature of an array as a low-level programming structure is contrasted
to the higher-level object management approach. Additional topics include
command-line arguments, variable length parameter lists, and multidimensional
arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such
as class hierarchies, overriding, and visibility. Strong emphasis is put on the
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of
polymorphism. Design issues related to polymorphism are examined as well.

Chapter 11 (Exceptions) explores the class hierarchy from the Java standard
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of
recursion. Several examples from various domains are used to demonstrate how
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an
introduction to a CS2 course.

Supplements

Student Online Resources
These student resources can be accessed at the book’s Companion Website,
“www.pearsonglobaleditions.com/Lewis”

■■ Source Code for all the programs in the text

■■ Links to Java development environments

■■ VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced in-
struction with easy navigation including the ability to select, play, rewind,
fast-forward, and stop within each VideoNote exercise. Margin icons in
your textbook let you know when a VideoNote video is available for a
particular concept or homework problem.

A01_LEWI1724_09_GE_FM.indd 8 09/10/17 4:48 PM

http://www.pearsonglobaleditions.com/Lewis

 PREFACE 9

Online Practice and Assessment with Pearson MyLab
Programming
Pearson MyLab Programming helps students fully grasp the logic, semantics, and
syntax of programming. Through practice exercises and immediate, personalized
feedback, Pearson MyLab Programming improves the programming competence
of beginning students who often struggle with the basic concepts and paradigms
of popular high-level programming languages.

A self-study and homework tool, Pearson MyLab Programming consists of
hundreds of small practice exercises organized around the structure of this
textbook. For students, the system automatically detects errors in the logic
and syntax of their code submissions and offers targeted hints that enable
students to figure out what went wrong—and why. For instructors, a compre-
hensive gradebook tracks correct and incorrect answers and stores the code
submitted by students for review.

Pearson MyLab Programming is offered to users of this book in partner-
ship with Turing’s Craft, the makers of the CodeLab interactive programming
exercise system. For a full demonstration, to see feedback from instructors
and students, or to get started using Pearson MyLab Programming in your
course, visit www.myprogramminglab.com.

Instructor Resources
The following supplements are available to qualified instructors only. Visit the
Pearson Education Instructor Resource Center (www.pearsonglobaleditions.com/
Lewis) for information on how to access them:

■■ Presentation Slides—in PowerPoint.

■■ Solutions to end-of-chapter Exercises.

■■ Solutions to end-of-chapter Programming Projects.

Features
Key Concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the
end of each chapter.

Listings. All programming examples are presented in clearly labeled list-
ings, followed by the program output, a sample run, or screen shot display
as appropriate. The code is colored to visually distinguish comments and
reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the
Java language are discussed in special highlighted sections with diagrams that
clearly identify the valid forms for a statement or construct. Syntax diagrams for
the entire Java language are presented in Appendix L.

A01_LEWI1724_09_GE_FM.indd 9 27/09/17 5:41 PM

http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/Lewis
http://www.pearsonglobaleditions.com/Lewis

10 PREFACE

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without loss
of continuity, or focused on specifically as desired. The material in any Graphics
Track section relates to the main topics of the chapter in which it is found.
Graphics Track sections are indicated by a brown border on the edge of the page.

Summary of Key Concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-Review Questions and Answers. These short-answer questions review
the fundamental ideas and terms established in the preceding section. They are
designed to allow students to assess their own basic grasp of the material. The
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or
writing of code fragments, and a thorough grasp of the chapter content. While the
exercises may deal with code, they generally do not require any online activity.

Programming Projects. These problems require the design and implementation
of Java programs. They vary widely in level of difficulty.

Pearson MyLab Programming. Through practice exercises and immediate,
personalized feedback, Pearson MyLab Programming improves the program-
ming competence of beginning students who often struggle with the basic con-
cepts and paradigms of popular high-level programming languages.

VideoNotes. Presented by the author, VideoNotes explain topics visually through
informal videos in an easy-to-follow format, giving students the extra help they need
to grasp important concepts. Look for this VideoNote icon to see which in-chapter
topics and end-of-chapter Programming Projects are available as VideoNotes.

Software Failures. These between-chapter vignettes discuss real-world flaws in
software design, encouraging students to adopt sound design practices from the
beginning.

Acknowledgments
I am most grateful to the faculty and students from around the world who have
provided their feedback on previous editions of this book. I am pleased to see
the depth of the faculty’s concern for their students and the students’ thirst for
knowledge. Your comments and questions are always welcome.

I am particularly thankful for the assistance, insight, and attention to detail
of Robert Burton from Brigham Young University. For years, Robert has con-
sistently provided valuable feedback that helps shape and evolve this textbook.

Bradley Richards, at the University of Applied Sciences in Northwestern
Switzerland, provided helpful advice and resources during the transition to
JavaFX. Brian Fraser of Simon Fraser University also has provided some excellent

A01_LEWI1724_09_GE_FM.indd 10 27/09/17 5:41 PM

 PREFACE 11

feedback that helped clarify some issues. Such interaction with computing educa-
tors is incredibly valuable.

I also want to thank Dan Joyce from Villanova University, who developed
the original Self-Review questions, ensuring that each relevant topic had enough
review material, as well as developing the answers to each.

I continue to be amazed at the talent and effort demonstrated by the team at
Pearson. Matt Goldstein, our editor, has amazing insight and commitment. His
assistant, Kristy Alaura, is a source of consistent and helpful support. Marketing
Manager Demetrius Hall makes sure that instructors understand the pedagogical
advantages of the text. The cover was designed by the skilled talents of Joyce
Wells. Scott Disanno and Carole Snyder led the production effort. Louise Capulli,
of Lakeside Editorial Services, was the Project Manager for this edition and a huge
help to the author on a daily basis. We thank all of these people for ensuring that
this book meets the highest quality standards.

Special thanks go to the following people who provided valuable advice to us
about this book via their participation in focus groups, interviews, and reviews.
They, as well as many other instructors and friends, have provided valuable feed-
back. They include:

Elizabeth Adams James Madison University
Hossein Assadipour Rutgers University
David Atkins University of Oregon
Lewis Barnett University of Richmond
Thomas W. Bennet Mississippi College
Gian Mario Besana DePaul University
Hans-Peter Bischof Rochester Institute of Technology
Don Braffitt Radford University
Robert Burton Brigham Young University
John Chandler Oklahoma State University
Robert Cohen University of Massachusetts, Boston
Dodi Coreson Linn Benton Community College
James H. Cross II Auburn University
Eman El-Sheikh University of West Florida
Sherif Elfayoumy University of North Florida
Christopher Eliot University of Massachusetts, Amherst
Wanda M. Eanes Macon State College
Stephanie Elzer Millersville University
Matt Evett Eastern Michigan University
Marj Feroe Delaware County Community College, Pennsylvania
John Gauch University of Kansas
Chris Haynes Indiana University

A01_LEWI1724_09_GE_FM.indd 11 27/09/17 5:41 PM

12 PREFACE

James Heliotis Rochester Institute of Technology
Laurie Hendren McGill University
Mike Higgs Austin College
Stephen Hughes Roanoke College
Daniel Joyce Villanova University
Saroja Kanchi Kettering University
Gregory Kapfhammer Allegheny College
Karen Kluge Dartmouth College
Jason Levy University of Hawaii
Peter MacKenzie McGill University
Jerry Marsh Oakland University
Blayne Mayfield Oklahoma State University
Gheorghe Muresan Rutgers University
Laurie Murphy Pacific Lutheran University
Dave Musicant Carleton College
Faye Navabi-Tadayon Arizona State University
Lawrence Osborne Lamar University
Barry Pollack City College of San Francisco
B. Ravikumar University of Rhode Island
David Riley University of Wisconsin (La Crosse)
Bob Roos Allegheny College
Carolyn Rosiene University of Hartford
Jerry Ross Lane Community College
Patricia Roth Southeastern Polytechnic State University
Carolyn Schauble Colorado State University
Arjit Sengupta Georgia State University
Bennet Setzer Kennesaw State University
Vijay Srinivasan JavaSoft, Sun Microsystems, Inc.
Stuart Steiner Eastern Washington University
Katherine St. John Lehman College, CUNY
Alexander Stoytchev Iowa State University
Ed Timmerman University of Maryland, University College
Shengru Tu University of New Orleans
Paul Tymann Rochester Institute of Technology
John J. Wegis JavaSoft, Sun Microsystems, Inc.
Ken Williams North Carolina Agricultural and Technical University
Linda Wilson Dartmouth College
David Wittenberg Brandeis University
Wang-Chan Wong California State University (Dominguez Hills)

Thanks also go to my friends and former colleagues at Villanova University
who have provided so much wonderful feedback. They include Bob Beck, Cathy

A01_LEWI1724_09_GE_FM.indd 12 27/09/17 5:41 PM

Helwig, Anany Levitin, Najib Nadi, Beth Taddei, and Barbara Zimmerman.
Thanks also to Pete DePasquale, formerly of The College of New Jersey and now
with SailThru, Inc.

Many other people have helped in various ways. They include Ken Arnold,
Mike Czepiel, John Loftus, Sebastian Niezgoda, and Saverio Perugini. Our apolo-
gies to anyone we may have omitted.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is
a tremendous resource. Their conferences provide an opportunity for educators
from all levels and all types of schools to share ideas and materials. If you are
an educator in any area of computing and are not involved with SIGCSE, you’re
missing out.

Global Edition Acknowledgments
The publishers would like to thank the following for their contribution to the
Global Edition:

Contributor

Vincent Ramdhanie School of Business and Computer Science (SBCS)

Reviewers

Muthuraj M. Samsung
Patricia Moore Dublin City University
Subrata Sinha Dibrugarh University

 PREFACE 13

A01_LEWI1724_09_GE_FM.indd 13 17/10/17 9:26 AM

A01_HANL4898_08_SE_FM.indd 2 24/12/14 12:49 PM

This page intentionally left blank

Contents

Preface 5

Chapter 1 Introduction 29

1.1 Computer Processing 30
Software Categories 31
Digital Computers 33
Binary Numbers 35

1.2 Hardware Components 38
Computer Architecture 39
Input/Output Devices 40
Main Memory and Secondary Memory 41
The Central Processing Unit 45

1.3 Networks 47
Network Connections 48
Local-Area Networks and Wide-Area

Networks 49
The Internet 50
The World Wide Web 52
Uniform Resource Locators 53

1.4 The Java Programming Language 54
A Java Program 55
Comments 57
Identifiers and Reserved Words 58
White Space 61

1.5 Program Development 63
Programming Language Levels 64
Editors, Compilers, and Interpreters 66
Development Environments 68
Syntax and Semantics 68
Errors 69

15

A01_LEWI1724_09_GE_FM.indd 15 27/09/17 5:41 PM

16 CONTENTS

1.6 Object-Oriented Programming 71
Problem Solving 72
Object-Oriented Software Principles 73

Chapter 2 Data and Expressions 83

2.1 Character Strings 84
The print and println Methods 84
String Concatenation 86
Escape Sequences 89

2.2 Variables and Assignment 91
Variables 91
The Assignment Statement 93
Constants 95

2.3 Primitive Data Types 97
Integers and Floating Points 97
Characters 99
Booleans 100

2.4 Expressions 101
Arithmetic Operators 101
Operator Precedence 102
Increment and Decrement Operators 106
Assignment Operators 107

2.5 Data Conversion 109
Conversion Techniques 111

2.6 Interactive Programs 113
The Scanner Class 113

Software Failure:
NASA Mars Climate Orbiter

and Polar Lander 124

Chapter 3 Using Classes and Objects 127

3.1 Creating Objects 128
Aliases 130

3.2 The String Class 132

A01_LEWI1724_09_GE_FM.indd 16 27/09/17 5:41 PM

 CONTENTS 17

3.3 Packages 136
The import Declaration 138

3.4 The Random Class 140

3.5 The Math Class 143

3.6 Formatting Output 146
The NumberFormat Class 146
The DecimalFormat Class 148
The printf Method 149

3.7 Enumerated Types 152

3.8 Wrapper Classes 155
Autoboxing 157

3.9 Introduction to JavaFX 157

3.10 Basic Shapes 161

3.11 Representing Colors 168

Chapter 4 Writing Classes 175

4.1 Classes and Objects Revisited 176

4.2 Anatomy of a Class 178
Instance Data 183
UML Class Diagrams 183

4.3 Encapsulation 185
Visibility Modifiers 186
Accessors and Mutators 187

4.4 Anatomy of a Method 188
The return Statement 190
Parameters 191
Local Data 191
Bank Account Example 192

4.5 Constructors Revisited 197

4.6 Arcs 198

4.7 Images 201
Viewports 203

A01_LEWI1724_09_GE_FM.indd 17 27/09/17 5:41 PM

18 CONTENTS

4.8 Graphical User Interfaces 204
Alternate Ways to Specify Event Handlers 207

4.9 Text Fields 208

Software Failure:
Denver Airport Baggage

Handling System 217

Chapter 5 Conditionals and Loops 219

5.1 Boolean Expressions 220
Equality and Relational Operators 221
Logical Operators 222

5.2 The if Statement 225
The if-else Statement 228
Using Block Statements 231
Nested if Statements 235

5.3 Comparing Data 238
Comparing Floats 238
Comparing Characters 239
Comparing Objects 240

5.4 The while Statement 242
Infinite Loops 246
Nested Loops 248
The break and continue Statements 251

5.5 Iterators 253
Reading Text Files 254

5.6 The ArrayList Class 257

5.7 Determining Event Sources 260

5.8 Managing Fonts 262

5.9 Check Boxes 265

5.10 Radio Buttons 269

Software Failure:
Therac-25 281

A01_LEWI1724_09_GE_FM.indd 18 27/09/17 5:41 PM

 CONTENTS 19

Chapter 6 More Conditionals and Loops 283

6.1 The switch Statement 284

6.2 The Conditional Operator 288

6.3 The do Statement 289

6.4 The for Statement 293
The for-each Loop 296
Comparing Loops 298

6.5 Using Loops and Conditionals with
Graphics 299

6.6 Graphic Transformations 304
Translation 304
Scaling 304
Rotation 305
Shearing 306
Applying Transformations on Groups 307

Chapter 7 Object-Oriented Design 317

7.1 Software Development Activities 318

7.2 Identifying Classes and Objects 319
Assigning Responsibilities 321

7.3 Static Class Members 321
Static Variables 322
Static Methods 322

7.4 Class Relationships 326
Dependency 326
Dependencies Among Objects

of the Same Class 326
Aggregation 332
The this Reference 336

7.5 Interfaces 338
The Comparable Interface 343
The Iterator Interface 344

A01_LEWI1724_09_GE_FM.indd 19 27/09/17 5:41 PM

20 CONTENTS

7.6 Enumerated Types Revisited 345

7.7 Method Design 348
Method Decomposition 349
Method Parameters Revisited 354

7.8 Method Overloading 359

7.9 Testing 361
Reviews 362
Defect Testing 362

7.10 GUI Design 365

7.11 Mouse Events 366

7.12 Key Events 371

Software Failure:
2003 Northeast Blackout 380

Chapter 8 Arrays 383

8.1 Array Elements 384

8.2 Declaring and Using Arrays 385
Bounds Checking 388
Alternate Array Syntax 393
Initializer Lists 393
Arrays as Parameters 394

8.3 Arrays of Objects 396

8.4 Command-Line Arguments 406

8.5 Variable Length Parameter Lists 408

8.6 Two-Dimensional Arrays 412
Multidimensional Arrays 416

8.7 Polygons and Polylines 417

8.8 An Array of Color Objects 420

8.9 Choice Boxes 423

Software Failure:
LA Air Traffic Control 433

A01_LEWI1724_09_GE_FM.indd 20 27/09/17 5:41 PM

 CONTENTS 21

Chapter 9 Inheritance 435

9.1 Creating Subclasses 436
The protected Modifier 439
The super Reference 442
Multiple Inheritance 445

9.2 Overriding Methods 447
Shadowing Variables 449

9.3 Class Hierarchies 450
The Object Class 452
Abstract Classes 453
Interface Hierarchies 455

9.4 Visibility 455

9.5 Designing for Inheritance 458
Restricting Inheritance 459

9.6 Inheritance in JavaFX 460

9.7 Color and Date Pickers 462

9.8 Dialog Boxes 466
File Choosers 469

Software Failure:
Ariane 5 Flight 501 477

Chapter 10 Polymorphism 479

10.1 Late Binding 480

10.2 Polymorphism via Inheritance 481

10.3 Polymorphism via Interfaces 494

10.4 Sorting 496
Selection Sort 497
Insertion Sort 503
Comparing Sorts 504

A01_LEWI1724_09_GE_FM.indd 21 27/09/17 5:41 PM

22 CONTENTS

10.5 Searching 505
Linear Search 505
Binary Search 507
Comparing Searches 511

10.6 Designing for Polymorphism 511

10.7 Properties 513
Change Listeners 516

10.8 Sliders 519

10.9 Spinners 521

Chapter 11 Exceptions 529

11.1 Exception Handling 530

11.2 Uncaught Exceptions 531

11.3 The try-catch Statement 532
The finally Clause 536

11.4 Exception Propagation 537

11.5 The Exception Class Hierarchy 541
Checked and Unchecked Exceptions 544

11.6 I/O Exceptions 545

11.7 Tool Tips and Disabling Controls 549

11.8 Scroll Panes 553

11.9 Split Panes and List Views 556

Chapter 12 Recursion 565

12.1 Recursive Thinking 566
Infinite Recursion 566
Recursion in Math 567

12.2 Recursive Programming 568
Recursion vs. Iteration 571
Direct vs. Indirect Recursion 571

A01_LEWI1724_09_GE_FM.indd 22 27/09/17 5:41 PM

 CONTENTS 23

12.3 Using Recursion 572
Traversing a Maze 573
The Towers of Hanoi 578

12.4 Tiled Images 583

12.5 Fractals 587

Chapter 13 Collections 601

13.1 Collections and Data Structures 602
Separating Interface from Implementation 602

13.2 Dynamic Representations 603
Dynamic Structures 603
A Dynamically Linked List 604
Other Dynamic List Representations 609

13.3 Linear Collections 611
Queues 611
Stacks 612

13.4 Non-Linear Data Structures 615
Trees 615
Graphs 616

13.5 The Java Collections API 618
Generics 618

Appendix A Glossary 625

Appendix B Number Systems 649

Appendix C The Unicode Character Set 657

Appendix D Java Operators 661

Appendix E Java Modifiers 667

Appendix F Java Coding Guidelines 671

A01_LEWI1724_09_GE_FM.indd 23 27/09/17 5:41 PM

24 CONTENTS

Appendix G JavaFX Layout Panes 677

Appendix H JavaFX Scene Builder 687

Appendix I Regular Expressions 697

Appendix J Javadoc Documentation Generator 699

Appendix K Java Syntax 705

Appendix L Answers to Self-Review Questions 719

Index 773

A01_LEWI1724_09_GE_FM.indd 24 27/09/17 5:41 PM

VideoNote

Overview of program elements. 56
Comparison of Java IDEs. 68
Examples of various error types. 70
Developing a solution for PP 1.2. 81
Example using strings and escape sequences. 89
Review of primitive data and expressions. 102
Example using the Scanner class. 117
Developing a solution of PP 2.10. 122
Creating objects. 129
Example using the Random and Math classes. 143
Developing a solution of PP 3.6. 173
Dissecting the Die class. 180
Discussion of the Account class. 194
Developing a solution of PP 4.2. 214
Examples using conditionals. 233
Examples using while loops. 245
Developing a solution of PP 5.4. 278
Examples using for loops. 294
Developing a solution of PP 6.2. 313
Exploring the static modifier. 321
Examples of method overloading. 360
Developing a solution of PP 7.1. 377
Overview of arrays. 387
Discussion of the LetterCount example. 392
Developing a solution of PP 8.5. 431
Overview of inheritance. 441
Example using a class hierarchy. 453
Exploring the Firm program. 482

 CONTENTS 25

A01_LEWI1724_09_GE_FM.indd 25 29/09/17 4:23 PM

26 CONTENTS

Sorting Comparable objects. 502
Developing a solution of PP 10.1. 526
Proper exception handling. 537
Developing a solution of PP 11.1. 562
Tracing the MazeSearch program. 576
Exploring the Towers of Hanoi. 579
Developing a solution of PP 12.1. 597
Example using a linked list. 604
Implementing a queue. 612
Developing a solution of PP 13.3. 622

A01_LEWI1724_09_GE_FM.indd 26 27/09/17 5:41 PM

Cover: fon.tepsoda/Shutterstock
Figure 2.1: NASA EOS Earth Observing System
Figure 4.2: Susan Van Etten/PhotoEdit
Figure 5.1: David Joel/The Image Bank/Getty Images
Figures 4.1a, 4.1b, 6.1a, 6.1b, 6.2, 11.3, 11.8, 11.9, 11.10, 12.5, APG.1a,

APG.1b: Pixabay
Figures 7.1a and 7.1b: Anarres/Openclipart
Figures 7.2a and 7.2b: National Oceanic and Atmospheric Administration
Figure 8.1: Matthew McVay/The Image Bank/Getty Images
Figure 9.1: Mario Fourmy/Redux Pictures
Figure H.1: NASA

Credits

27

A01_LEWI1724_09_GE_FM.indd 27 27/09/17 5:41 PM

Through the power of practice and immediate personalized

feedback, Pearson MyLab Programming improves your

performance.

Learn more at www.myprogramminglab.com

get with the programming

Pearson MyLab Programming

To improving results

A01_LEWI1724_09_GE_FM.indd 28 17/10/17 10:23 AM

http://www.myprogramminglab.com

29

C H A P T E R O B J E C T I V E S
●● Describe the relationship between hardware and software.

●● Define various types of software and how they are used.

●● Identify the core hardware components of a computer and explain their roles.

●● Explain how the hardware components interact to execute programs and
manage data.

●● Describe how computers are connected into networks to share information.

●● Introduce the Java programming language.

●● Describe the steps involved in program compilation and execution.

●● Present an overview of object-oriented principles.

This book is about writing well-designed software. To understand

software, we must first have a fundamental understanding of its role

in a computer system. Hardware and software cooperate in a com-

puter system to accomplish complex tasks. The purpose of various

hardware components and the way those components are connected

into networks are important prerequisites to the study of software

development. This chapter first discusses basic computer processing

and then begins our exploration of software development by intro-

ducing the Java programming language and the principles of object-

oriented programming.

Introduction 1

M01_LEWI1724_09_GE_C01.indd 29 23/09/17 3:35 PM

30 CHAPTER 1 Introduction

1.1 Computer Processing

All computer systems, whether it’s a desktop, laptop, tablet, smartphone, gaming
console, or a special-purpose device such as a car’s navigation system, share certain
characteristics. The details vary, but they all process data in similar ways. While the
majority of this book deals with the development of software, we’ll begin with an
overview of computer processing to set the context. It’s important to establish some
fundamental terminology and see how key pieces of a computer system interact.

A computer system is made up of hardware and software. The hardware compo-
nents of a computer system are the physical, tangible pieces that support the com-
puting effort. They include chips, boxes, wires, keyboards, speakers, disks, memory
cards, universal serial bus (USB) flash drives (also called jump drives), cables, plugs,
printers, mice, monitors, routers, and so on. If you can physically touch it and it can
be considered part of a computer system, then it is computer hardware.

The hardware components of a computer are essentially useless
without instructions to tell them what to do. A program is a series of
instructions that the hardware executes one after another. Software
consists of programs and the data that programs use. Software is
the intangible counterpart to the physical hardware components.

Together they form a tool that we can use to help solve problems.

The key hardware components in a computer system are

●■ central processing unit (CPU)

●■ input/output (I/O) devices

●■ main memory

●■ secondary memory devices

Each of these hardware components is described in detail in the next section. For
now, let’s simply examine their basic roles. The central processing unit (CPU) is
a device that executes the individual commands of a program. Input/output (I/O)
devices, such as the keyboard, mouse, trackpad, and monitor, allow a human
being to interact with the computer.

Programs and data are held in storage devices called memory, which fall
into two categories: main memory and secondary memory. Main memory is the
storage device that holds the software while it is being processed by the CPU.
Secondary memory devices store software in a relatively permanent manner. The
most important secondary memory device of a typical computer system is the
hard disk that resides inside the main computer box. A USB flash drive is also
an important secondary memory device. A typical USB flash drive cannot store
nearly as much information as a hard disk. USB flash drives have the advantage
of portability; they can be removed temporarily or moved from computer to
computer as needed.

KEY CONCEPT
A computer system consists of
hardware and software that work in
 concert to help us solve problems.

M01_LEWI1724_09_GE_C01.indd 30 23/09/17 3:35 PM

