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5

Welcome to the Ninth Edition of Java Software Solutions: Foundations of 
Program Design. We are pleased that this book has served the needs of so many 
students and faculty over the years. This edition has been tailored further to 
improve the coverage of topics key to introductory computing.

New to This Edition
The biggest change to this edition of Java Software Solutions is a sweeping over-
haul of the Graphics Track sections of the book to fully embrace the JavaFX API. 
Swing is no longer actively supported by Oracle. JavaFX is now the preferred 
approach for developing graphics and graphical user interfaces (GUIs) in Java, 
and we make use of it throughout this text.

The changes include the following:

■■ Coverage of JavaFX graphical shapes.

■■ Coverage of JavaFX controls, including buttons, text fields, check boxes, 
radio buttons, choice boxes, color pickers, date pickers, dialog boxes, 
sliders, and spinners.

■■ Use of Java 8 method references and lambda expressions to define event 
handlers.

■■ An exploration of the JavaFX class hierarchy.

■■ An explanation of JavaFX properties and property binding.

■■ Revised end-of-chapter exercises and programming projects.

■■ A new appendix (Appendix G) that presents an overview of JavaFX layout 
panes.

■■ A new appendix (Appendix H) that introduces the JavaFX Scene Builder 
software.

There are two exciting aspects to embracing JavaFX. First, it provides a much 
cleaner approach to GUI development than Swing did. Equivalent programs using 
JavaFX are shorter and more easily understood.

Second, the JavaFX approach embraces core object-oriented principles bet-
ter than Swing did. For example, all graphic shapes are represented by classes 
with fundamental data elements, such as a Circle class with a radius. Early on 
(Chapter 3), the shape classes provide a wealth of basic, well-designed classes, just 
when students need to understand what classes and objects are all about.

Preface
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6 PREFACE

The use of Java 8 method references provides an easy-to-understand approach 
to defining event handlers. The use of the (underlying) lambda expressions is also 
explored as an alternative approach.

JavaFX layout panes are used and explained as needed in examples, with a full 
overview of layout panes provided in a new appendix. We think this works better 
than the way we treated Swing layout managers, as a separate topic in a chapter.

All GUI development in the book is done “by hand” in straight Java code, 
which is important for beginning students. The JavaFX drag-and-drop Scene 
Builder is discussed in a new appendix, but it is not used in the book itself.

In addition to the changes related to JavaFX, we also updated examples and 
discussions in various places throughout the book as needed to bring them up-to-
date and improve their pedagogy.

We’re excited about the opportunities this new edition of Java Software 
Solutions provides for both students and instructors. As always, questions and 
comments are welcome.

Cornerstones of the Text
This text is based on the following basic ideas that we believe make for a sound 
introductory text:

■■ True object-orientation. A text that really teaches a solid object-oriented 
approach must use what we call object-speak. That is, all processing should 
be discussed in object-oriented terms. That does not mean, however, that 
the first program a student sees must discuss the writing of multiple classes 
and methods. A student should learn to use objects before learning to write 
them. This text uses a natural progression that culminates in the ability to 
design real object-oriented solutions.

■■ Sound programming practices. Students should not be taught how to 
program; they should be taught how to write good software. There’s a 
difference. Writing software is not a set of cookbook actions, and a good 
program is more than a collection of statements. This text integrates 
practices that serve as the foundation of good programming skills. These 
practices are used in all examples and are reinforced in the discussions. 
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques 
throughout the text. The Software Failure vignettes reiterate these lessons 
by demonstrating the perils of not following these sound practices.

■■ Examples. Students learn by example. This text is filled with fully imple-
mented examples that demonstrate specific concepts. We have intertwined 
small, readily understandable examples with larger, more realistic ones. 
There is a balance between graphics and nongraphics programs. The 
VideoNotes provide additional examples in a live presentation format.
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 PREFACE  7

■■ Graphics and GUIs. Graphics can be a great motivator for students, and 
their use can serve as excellent examples of object-orientation. As such, we 
use them throughout the text in a well-defined set of sections that we call 
the Graphics Track. The book fully embraces the JavaFX API, the preferred 
and fully-supported approach to Java graphics and GUIs. Students learn to 
build GUIs in the appropriate way by using a natural progression of topics. 
The Graphics Track can be avoided entirely for those who do not choose to 
use graphics.

Chapter Breakdown
Chapter 1 (Introduction) introduces computer systems in general, including basic 
architecture and hardware, networking, programming, and language translation. 
Java is introduced in this chapter, and the basics of general program development, 
as well as object-oriented programming, are discussed. This chapter contains 
broad introductory material that can be covered while students become familiar 
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used 
in a Java program and the use of expressions to perform calculations. It discusses 
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes 
and the objects that can be created from them. Classes and objects are used to 
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes 
and methods. Topics include instance data, visibility, scope, method parameters, 
and return types. Encapsulation and constructors are covered as well. Some of the 
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to 
make decisions. Then the if statement and while loop are explored in detail. 
Once loops are established, the concept of an iterator is introduced and the 
Scanner class is revisited for additional input parsing and the reading of text files. 
Finally, the ArrayList class introduced, which provides the option for managing 
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java’s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop. 
The for-each loop is also used to process iterators and ArrayList objects.

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of 
issues related to the design of classes. Techniques for identifying the classes and 
objects needed for a problem and the relationships among them are discussed. This 

A01_LEWI1724_09_GE_FM.indd   7 27/09/17   5:41 PM



8 PREFACE

chapter also covers static class members, interfaces, and the design of enumerated 
type classes. Method design issues and method overloading are also discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array process-
ing. The nature of an array as a low-level programming structure is contrasted 
to the higher-level object management approach. Additional topics include 
command-line arguments, variable length parameter lists, and multidimensional 
arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such 
as class hierarchies, overriding, and visibility. Strong emphasis is put on the 
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates 
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of 
polymorphism. Design issues related to polymorphism are examined as well.

Chapter 11 (Exceptions) explores the class hierarchy from the Java standard 
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and 
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of 
recursion. Several examples from various domains are used to demonstrate how 
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying 
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an 
introduction to a CS2 course.

Supplements

Student Online Resources
These student resources can be accessed at the book’s Companion Website, 
“www.pearsonglobaleditions.com/Lewis”

■■ Source Code for all the programs in the text

■■ Links to Java development environments

■■ VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced in-
struction with easy navigation including the ability to select, play, rewind, 
fast-forward, and stop within each VideoNote exercise. Margin icons in 
your textbook let you know when a VideoNote video is available for a 
particular concept or homework problem.
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 PREFACE  9

Online Practice and Assessment with Pearson MyLab 
Programming
Pearson MyLab Programming helps students fully grasp the logic, semantics, and 
syntax of programming. Through practice exercises and immediate, personalized 
feedback, Pearson MyLab Programming improves the programming competence 
of beginning students who often struggle with the basic concepts and paradigms 
of popular high-level programming languages.

A self-study and homework tool, Pearson MyLab Programming consists of 
hundreds of small practice exercises organized around the structure of this 
textbook. For students, the system automatically detects errors in the logic 
and syntax of their code submissions and offers targeted hints that enable 
students to figure out what went wrong—and why. For instructors, a compre-
hensive gradebook tracks correct and incorrect answers and stores the code 
submitted by students for review.

Pearson MyLab Programming is offered to users of this book in partner-
ship with Turing’s Craft, the makers of the CodeLab interactive programming 
exercise system. For a full demonstration, to see feedback from instructors 
and students, or to get started using Pearson MyLab Programming in your 
course, visit www.myprogramminglab.com.

Instructor Resources
The following supplements are available to qualified instructors only. Visit the 
Pearson Education Instructor Resource Center (www.pearsonglobaleditions.com/
Lewis) for information on how to access them:

■■ Presentation Slides—in PowerPoint.

■■ Solutions to end-of-chapter Exercises.

■■ Solutions to end-of-chapter Programming Projects. 

Features
Key Concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the 
end of each chapter.

Listings. All programming examples are presented in clearly labeled list-
ings, followed by the program output, a sample run, or screen shot display 
as appropriate. The code is colored to visually distinguish comments and 
reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the 
Java language are discussed in special highlighted sections with diagrams that 
clearly identify the valid forms for a statement or construct. Syntax diagrams for 
the entire Java language are presented in Appendix L.
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10 PREFACE

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without loss 
of continuity, or focused on specifically as desired. The material in any Graphics 
Track section relates to the main topics of the chapter in which it is found. 
Graphics Track sections are indicated by a brown border on the edge of the page.

Summary of Key Concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-Review Questions and Answers. These short-answer questions review 
the fundamental ideas and terms established in the preceding section. They are 
designed to allow students to assess their own basic grasp of the material. The 
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or 
writing of code fragments, and a thorough grasp of the chapter content. While the 
exercises may deal with code, they generally do not require any online activity.

Programming Projects. These problems require the design and implementation 
of Java programs. They vary widely in level of difficulty.

Pearson MyLab Programming. Through practice exercises and immediate, 
personalized feedback, Pearson MyLab Programming improves the program-
ming competence of beginning students who often struggle with the basic con-
cepts and paradigms of popular high-level programming languages.

VideoNotes. Presented by the author, VideoNotes explain topics visually through 
informal videos in an easy-to-follow format, giving students the extra help they need 
to grasp important concepts. Look for this VideoNote icon to see which in-chapter 
topics and end-of-chapter Programming Projects are available as VideoNotes.

Software Failures. These between-chapter vignettes discuss real-world flaws in 
software design, encouraging students to adopt sound design practices from the 
beginning.
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C H A P T E R  O B J E C T I V E S
●● Describe the relationship between hardware and software.

●● Define various types of software and how they are used.

●● Identify the core hardware components of a computer and explain their roles.

●● Explain how the hardware components interact to execute programs and 
manage data.

●● Describe how computers are connected into networks to share information.

●● Introduce the Java programming language.

●● Describe the steps involved in program compilation and execution.

●● Present an overview of object-oriented principles.

This book is about writing well-designed software. To understand 

software, we must first have a fundamental understanding of its role 

in a computer system. Hardware and software cooperate in a com-

puter system to accomplish complex tasks. The purpose of various 

hardware components and the way those components are connected 

into networks are important prerequisites to the study of software 

development. This chapter first discusses basic computer processing 

and then begins our exploration of software development by intro-

ducing the Java programming language and the principles of object-

oriented programming.

Introduction 1
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30 CHAPTER 1 Introduction

1.1 Computer Processing

All computer systems, whether it’s a desktop, laptop, tablet, smartphone, gaming 
console, or a special-purpose device such as a car’s navigation system, share certain 
characteristics. The details vary, but they all process data in similar ways. While the 
majority of this book deals with the development of software, we’ll begin with an 
overview of computer processing to set the context. It’s important to establish some 
fundamental terminology and see how key pieces of a computer system interact.

A computer system is made up of hardware and software. The hardware compo-
nents of a computer system are the physical, tangible pieces that support the com-
puting effort. They include chips, boxes, wires, keyboards, speakers, disks, memory 
cards, universal serial bus (USB) flash drives (also called jump drives), cables, plugs, 
printers, mice, monitors, routers, and so on. If you can physically touch it and it can 
be considered part of a computer system, then it is computer hardware.

The hardware components of a computer are essentially useless 
without instructions to tell them what to do. A program is a series of 
instructions that the hardware executes one after another. Software 
consists of programs and the data that programs use. Software is 
the intangible counterpart to the physical hardware components. 

Together they form a tool that we can use to help solve problems.

The key hardware components in a computer system are

●■ central processing unit (CPU)

●■ input/output (I/O) devices

●■ main memory

●■ secondary memory devices

Each of these hardware components is described in detail in the next section. For 
now, let’s simply examine their basic roles. The central processing unit (CPU) is 
a device that executes the individual commands of a program. Input/output (I/O) 
devices, such as the keyboard, mouse, trackpad, and monitor, allow a human 
being to interact with the computer.

Programs and data are held in storage devices called memory, which fall 
into two categories: main memory and secondary memory. Main memory is the 
storage device that holds the software while it is being processed by the CPU. 
Secondary memory devices store software in a relatively permanent manner. The 
most important secondary memory device of a typical computer system is the 
hard disk that resides inside the main computer box. A USB flash drive is also 
an important secondary memory device. A typical USB flash drive cannot store 
nearly as much information as a hard disk. USB flash drives have the advantage 
of portability; they can be removed temporarily or moved from computer to 
computer as needed.

KEY CONCEPT
A computer system consists of  
hardware and software that work in 
 concert to help us solve problems.
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